
Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 1

Interfacing the Serial / RS232 Port V5.0

Disclaimer : While every effort has been made to make sure the information in this document is correct, the author can not be liable for
any damages whatsoever for loss relating to this document. Use this information at your own risk.

Table of Contents

Part 1 : Hardware (PC’s) Page 4

Hardware Properties Page 4

Serial Pinouts (DB25 & DB9) Page 4

Pin Functions Page 5

Null Modems Page 5

Loopback Plugs Page 6

DTE/DCE Speeds Page 7

Flow Control Page 7

The UART (8250’s and Compatables) Page 8

Type of UARTS (For PC’s) Page 10

Part 2 : Serial Port Registers (PC’s) Page 12

Port Addresses and IRQ’s Page 12

Table of Registers Page 13

DLAB? Page 14

Interrupt Enable Register (IER) Page 15

Interrupt Identification Register (IIR) Page 15

First In/First Out Control Register (FCR) Page 16

Line Control Register (LCR) Page 17

Modem Control Register (MCR) Page 19

Line Status Register (LSR) Page 20

Modem Status Register (MSR) Page 21

Scratch Register Page 21

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 2

Part 3 : Programming (PC’s) Page 22

Polling or Interrupt Driven? Page 22

Termpoll.c - A Simple Comms Program using Polling Page 22

Buff1024.c - An Interrupt Driven Comms Program Page 24

Interrupt Vectors Page 27

Interrupt Service Routine Page 28

UART Configuartion Page 30

Main Routine (Loop) Page 31

Determining the type of UART via Software Page 31

Part 4 : External Hardware - Interfacing Methods Page 33

RS-232 Waveforms Page 33

RS-232 Level Converters Page 34

Making use of the serial format Page 34

8250 and compatable UARTS Page 35

CDP6402, AY-5-1015 / D36402R-9 etc UARTS Page 36

Microcontrollers Page 39

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 3

Introduction

The Serial Port is harder to interface than the Parallel Port. In most cases, any device you connect
to the serial port will need the serial transmission converted back to parallel so that it can be used. This
can be done using a UART. On the software side of things, there are many more registers that you have
to attend to than on a Standard Parallel Port. (SPP)

So what are the advantages of using serial data transfer rather than parallel?

1. Serial Cables can be longer than Parallel cables. The serial port transmits a '1'
as -3 to -25 volts and a '0' as +3 to +25 volts where as a parallel port
transmits a '0' as 0v and a '1' as 5v. Therefore the serial port can have a
maximum swing of 50V compared to the parallel port which has a maximum
swing of 5 Volts. Therefore cable loss is not going to be as much of a
problem for serial cables than they are for parallel.

2. You don't need as many wires than parallel transmission. If your device
needs to be mounted a far distance away from the computer then 3 core cable
(Null Modem Configuration) is going to be a lot cheaper that running 19 or
25 core cable. However you must take into account the cost of the interfacing
at each end.

3. Infra Red devices have proven quite popular recently. You may of seen many
electronic diaries and palmtop computers which have infra red capabilities
build in. However could you imagine transmitting 8 bits of data at the one
time across the room and being able to (from the devices point of view)
decipher which bits are which? Therefore serial transmission is used where
one bit is sent at a time. IrDA-1 (The first infra red specifications) was
capable of 115.2k baud and was interfaced into a UART. The pulse length
however was cut down to 3/16th of a RS232 bit length to conserve power
considering these devices are mainly used on diaries, laptops and palmtops.

4. Microcontroller's have also proven to be quite popular recently. Many of
these have in built SCI (Serial Communications Interfaces) which can be
used to talk to the outside world. Serial Communication reduces the pin
count of these MPU's. Only two pins are commonly used, Transmit Data
(TXD) and Receive Data (RXD) compared with at least 8 pins if you use a 8
bit Parallel method (You may also require a Strobe).

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 4

Part One : Hardware (PC's)

Hardware Properties

Devices which use serial cables for their communication are split into two categories. These are
DCE (Data Communications Equipment) and DTE (Data Terminal Equipment.) Data Communications
Equipment are devices such as your modem, TA adapter, plotter etc while Data Terminal Equipment is
your Computer or Terminal.

The electrical specifications of the serial port is contained in the EIA (Electronics Industry
Association) RS232C standard. It states many parameters such as -

1. A "Space" (logic 0) will be between +3 and +25 Volts.

2. A "Mark" (Logic 1) will be between -3 and -25 Volts.

3. The region between +3 and -3 volts is undefined.

4. An open circuit voltage should never exceed 25 volts. (In Reference to
GND)

5. A short circuit current should not exceed 500mA. The driver should be
able to handle this without damage. (Take note of this one!)

Above is no where near a complete list of the EIA standard. Line Capacitance, Maximum Baud
Rates etc are also included. For more information please consult the EIA RS232-E standard. It is
interesting to note however, that the RS232C standard specifies a maximum baud rate of 20,000 BPS!,
which is rather slow by today's standards. Revised standards, EIA-232D & EIA-232E were released, in
1987 & 1991 respectively.

Serial Ports come in two "sizes", There are the D-Type 25 pin connector and the D-Type 9 pin
connector both of which are male on the back of the PC, thus you will require a female connector on
your device. Below is a table of pin connections for the 9 pin and 25 pin D-Type connectors.

Serial Pinouts (D25 and D9 Connectors)

D-Type-25 Pin
No.

D-Type-9 Pin No. Abbreviation Full Name

Pin 2 Pin 3 TD Transmit Data

Pin 3 Pin 2 RD Receive Data

Pin 4 Pin 7 RTS Request To Send

Pin 5 Pin 8 CTS Clear To Send

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 5

Pin 6 Pin 6 DSR Data Set Ready

Pin 7 Pin 5 SG Signal Ground

Pin 8 Pin 1 CD Carrier Detect

Pin 20 Pin 4 DTR Data Terminal Ready

Pin 22 Pin 9 RI Ring Indicator

Table 1 : D Type 9 Pin and D Type 25 Pin Connectors

Pin Functions

Abbreviation Full Name Function

TD Transmit Data Serial Data Output (TXD)

RD Receive Data Serial Data Input (RXD)

CTS Clear to Send This line indicates that the Modem is ready to exchange
data.

DCD Data Carrier
Detect

When the modem detects a "Carrier" from the modem at
the other end of the phone line, this Line becomes active.

DSR Data Set Ready This tells the UART that the modem is ready to establish a
link.

DTR Data Terminal
Ready

This is the opposite to DSR. This tells the Modem that the
UART is ready to link.

RTS Request To Send This line informs the Modem that the UART is ready to
exchange data.

RI Ring Indicator Goes active when modem detects a ringing signal from the
PSTN.

Null Modems

A Null Modem is used to connect two DTE's together. This is commonly used as a cheap way to
network games or to transfer files between computers using Zmodem Protocol, Xmodem Protocol etc.
This can also be used with many Microprocessor Development Systems.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 6

Figure 1 : Null Modem Wiring Diagram

Above is my preferred method of wiring a Null Modem. It only requires 3 wires (TD, RD & SG)
to be wired straight through thus is more cost effective to use with long cable runs. The theory of
operation is reasonably easy. The aim is to make to computer think it is talking to a modem rather than
another computer. Any data transmitted from the first computer must be received by the second thus TD
is connected to RD. The second computer must have the same set-up thus RD is connected to TD. Signal
Ground (SG) must also be connected so both grounds are common to each computer.

The Data Terminal Ready is looped back to Data Set Ready and Carrier Detect on both
computers. When the Data Terminal Ready is asserted active, then the Data Set Ready and Carrier
Detect immediately become active. At this point the computer thinks the Virtual Modem to which it is
connected is ready and has detected the carrier of the other modem.

All left to worry about now is the Request to Send and Clear To Send. As both computers
communicate together at the same speed, flow control is not needed thus these two lines are also linked
together on each computer. When the computer wishes to send data, it asserts the Request to Send high
and as it's hooked together with the Clear to Send, It immediately gets a reply that it is ok to send and
does so.

Notice that the ring indicator is not connected to anything of each end. This line is only used to
tell the computer that there is a ringing signal on the phone line. As we don't have a modem connected to
the phone line this is left disconnected.

LoopBack Plug

Figure 2 : Loopback Plug Wiring
Diagram

 This loopback plug can come in extremely handy when writing
Serial / RS232 Communications Programs. It has the receive and
transmit lines connected together, so that anything transmitted out of
the Serial Port is immediately received by the same port. If you
connect this to a Serial Port an load a Terminal Program, anything
you type will be immediately displayed on the screen. This can be
used with the examples later in this tutorial.

Please note that this is not intended for use with Diagnostic
Programs and thus will probably not work. For these programs you
require a differently wired Loop Back plug which may vary from
program to program.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 7

DTE / DCE Speeds

We have already talked briefly about DTE & DCE. A typical Data Terminal Device is a
computer and a typical Data Communications Device is a Modem. Often people will talk about DTE to
DCE or DCE to DCE speeds. DTE to DCE is the speed between your modem and computer, sometimes
referred to as your terminal speed. This should run at faster speeds than the DCE to DCE speed. DCE to
DCE is the link between modems, sometimes called the line speed.

Most people today will have 28.8K or 33.6K modems. Therefore we should expect the DCE to
DCE speed to be either 28.8K or 33.6K. Considering the high speed of the modem we should expect the
DTE to DCE speed to be about 115,200 BPS.(Maximum Speed of the 16550a UART) This is where
some people often fall into a trap. The communications program which they use have settings for DCE
to DTE speeds. However they see 9.6 KBPS, 14.4 KBPS etc and think it is your modem speed.

Today's Modems should have Data Compression build into them. This is very much like PK-ZIP
but the software in your modem compresses and decompresses the data. When set up correctly you can
expect compression ratios of 1:4 or even higher. 1 to 4 compression would be typical of a text file. If we
were transferring that text file at 28.8K (DCE-DCE), then when the modem compresses it you are
actually transferring 115.2 KBPS between computers and thus have a DCE-DTE speed of 115.2 KBPS.
Thus this is why the DCE-DTE should be much higher than your modem's connection speed.

Some modem manufacturers quote a maximum compression ratio as 1:8. Lets say for example its
on a new 33.6 KBPS modem then we may get a maximum 268,800 BPS transfer between modem and
UART. If you only have a 16550a which can do 115,200 BPS tops, then you would be missing out on a
extra bit of performance. Buying a 16C650 should fix your problem with a maximum transfer rate of
230,400 BPS.

However don't abuse your modem if you don't get these rates. These are MAXIMUM
compression ratios. In some instances if you try to send a already compressed file, your modem can
spend more time trying the compress it, thus you get a transmission speed less than your modem's
connection speed. If this occurs try turning off your data compression. This should be fixed on newer
modems. Some files compress easier than others thus any file which compresses easier is naturally going
to have a higher compression ratio.

Flow Control

So if our DTE to DCE speed is several times faster than our DCE to DCE speed the PC can send
data to your modem at 115,200 BPS. Sooner or later data is going to get lost as buffers overflow, thus
flow control is used. Flow control has two basic varieties, Hardware or Software.

Software flow control, sometimes expressed as Xon/Xoff uses two characters Xon and Xoff. Xon
is normally indicated by the ASCII 17 character where as the ASCII 19 character is used for Xoff. The
modem will only have a small buffer so when the computer fills it up the modem sends a Xoff character
to tell the computer to stop sending data. Once the modem has room for more data it then sends a Xon
character and the computer sends more data. This type of flow control has the advantage that it doesn't
require any more wires as the characters are sent via the TD/RD lines. However on slow links each
character requires 10 bits which can slow communications down.

Hardware flow control is also known as RTS/CTS flow control. It uses two wires in your serial
cable rather than extra characters transmitted in your data lines. Thus hardware flow control will not

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 8

slow down transmission times like Xon-Xoff does. When the computer wishes to send data it takes
active the Request to Send line. If the modem has room for this data, then the modem will reply by
taking active the Clear to Send line and the computer starts sending data. If the modem does not have the
room then it will not send a Clear to Send.

The UART (8250 and Compatibles)

UART stands for Universal Asynchronous Receiver / Transmitter. Its the little box of tricks
found on your serial card which plays the little games with your modem or other connected devices.
Most cards will have the UART's integrated into other chips which may also control your parallel port,
games port, floppy or hard disk drives and are typically surface mount devices. The 8250 series, which
includes the 16450, 16550, 16650, & 16750 UARTS are the most commonly found type in your PC.
Later we will look at other types which can be used in your homemade devices and projects.

Figure 3 : Pin Diagrams for 16550, 16450 & 8250 UARTs

The 16550 is chip compatible with the 8250 & 16450. The only two differences are pins 24 &
29. On the 8250 Pin 24 was chip select out which functioned only as a indicator to if the chip was active
or not. Pin 29 was not connected on the 8250/16450 UARTs. The 16550 introduced two new pins in
their place. These are Transmit Ready and Receive Ready which can be implemented with DMA (Direct
Memory Access). These Pins have two different modes of operation. Mode 0 supports single transfer
DMA where as Mode 1 supports Multi-transfer DMA.

Mode 0 is also called the 16450 mode. This mode is selected when the FIFO buffers are disabled
via Bit 0 of the FIFO Control Register or When the FIFO buffers are enabled but DMA Mode Select = 0.
(Bit 3 of FCR) In this mode RXRDY is active low when at least one character (Byte) is present in the
Receiver Buffer. RXRDY will go inactive high when no more characters are left in the Receiver Buffer.
TXRDY will be active low when there are no characters in the Transmit Buffer. It will go inactive high
after the first character / byte is loaded into the Transmit Buffer.

Mode 1 is when the FIFO buffers are active and the DMA Mode Select = 1. In Mode 1, RXRDY
will go active low when the trigger level is reached or when 16550 Time Out occurs and will return to
inactive state when no more characters are left in the FIFO. TXRDY will be active when no characters
are present in the Transmit Buffer and will go inactive when the FIFO Transmit Buffer is completely
Full.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 9

All the UARTs pins are TTL compatible. That includes TD, RD, RI, DCD, DSR, CTS, DTR and
RTS which all interface into your serial plug, typically a D-type connector. Therefore RS232 Level
Converters (which we talk about in detail later) are used. These are commonly the DS1489 Receiver and
the DS1488 as the PC has +12 and -12 volt rails which can be used by these devices. The RS232
Converters will convert the TTL signal into RS232 Logic Levels.

Pin No. Name Notes

Pin 1:8 D0:D7 Data Bus

Pin 9 RCLK Receiver Clock Input. The frequency of this input should equal the
receivers baud rate * 16

Pin 10 RD Receive Data

Pin 11 TD Transmit Data

Pin 12 CS0 Chip Select 0 - Active High

Pin 13 CS1 Chip Select 1 - Active High

Pin 14 nCS2 Chip Select 2 - Active Low

Pin 15 nBAUDOUT Baud Output - Output from Programmable Baud Rate Generator.
Frequency = (Baud Rate x 16)

Pin 16 XIN External Crystal Input - Used for Baud Rate Generator Oscillator

Pin 17 XOUT External Crystal Output

Pin 18 nWR Write Line - Inverted

Pin 19 WR Write Line - Not Inverted

Pin 20 VSS Connected to Common Ground

Pin 21 RD Read Line - Inverted

Pin 22 nRD Read Line - Not Inverted

Pin 23 DDIS Driver Disable. This pin goes low when CPU is reading from UART.
Can be connected to Bus Transceiver in case of high capacity data
bus.

Pin 24 nTXRDY Transmit Ready

Pin 25 nADS Address Strobe. Used if signals are not stable during read or write
cycle

Pin 26 A2 Address Bit 2

Pin 27 A1 Address Bit 1

Pin 28 A0 Address Bit 0

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 10

Pin 29 nRXRDY Receive Ready

Pin 30 INTR Interrupt Output

Pin 31 nOUT2 User Output 2

Pin 32 nRTS Request to Send

Pin 33 nDTR Data Terminal Ready

Pin 34 nOUT1 User Output 1

Pin 35 MR Master Reset

Pin 36 nCTS Clear To Send

Pin 37 nDSR Data Set Ready

Pin 38 nDCD Data Carrier Detect

Pin 39 nRI Ring Indicator

Pin 40 VDD + 5 Volts

Table 2 : Pin Assignments for 16550A UART

The UART requires a Clock to run. If you look at your serial card a common crystal found is
either a 1.8432 MHZ or a 18.432 MHZ Crystal. The crystal in connected to the XIN-XOUT pins of the
UART using a few extra components which help the crystal to start oscillating. This clock will be used
for the Programmable Baud Rate Generator which directly interfaces into the transmit timing circuits but
not directly into the receiver timing circuits. For this an external connection mast be made from pin 15
(BaudOut) to pin 9 (Receiver clock in.) Note that the clock signal will be at Baudrate * 16.

If you are serious about pursuing the 16550 UART used in your PC further, then would suggest
downloading a copy of the PC16550D data sheet from National Semiconductor,
(http://www.natsemi.com) Data sheets are available in .PDF format so you will need Adobe Acrobat
Reader to read these. Texas Instruments (http://www.ti.com) has released the 16750 UART which has 64
Byte FIFO's. Data Sheets for the TL16C750 are available from the Texas Instruments Site.

Types of UARTS (For PC's)

8250 First UART in this series. It contains no scratch register. The 8250A was an
improved version of the 8250 which operates faster on the bus side.

8250A This UART is faster than the 8250 on the bus side. Looks exactly the same to
software than 16450.

8250B Very similar to that of the 8250 UART.

16450 Used in AT's (Improved bus speed over 8250's). Operates comfortably at
38.4KBPS. Still quite common today.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 11

16550 This was the first generation of buffered UART. It has a 16 byte buffer, however it
doesn't work and is replaced with the 16550A.

16550A Is the most common UART use for high speed communications eg 14.4K &
28.8K Modems. They made sure the FIFO buffers worked on this UART.

16650 Very recent breed of UART. Contains a 32 byte FIFO, Programmable X-On / X-
Off characters and supports power management.

16750 Produced by Texas Instruments. Contains a 64 byte FIFO.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 12

Part Two : Serial Port's Registers (PC's)

Port Addresses & IRQ's

Name Address IRQ

COM 1 3F8 4

COM 2 2F8 3

COM 3 3E8 4

COM 4 2E8 3

Table 3 : Standard Port Addresses

Above is the standard port addresses. These should work for most P.C's. If you just happen to be
lucky enough to own a IBM P/S2 which has a micro-channel bus, then expect a different set of addresses
and IRQ's. Just like the LPT ports, the base addresses for the COM ports can be read from the BIOS
Data Area.

Start Address Function

0000:0400 COM1's Base Address

0000:0402 COM2's Base Address

0000:0404 COM3's Base Address

0000:0406 COM4's Base Address

Table 4 - COM Port Addresses in the BIOS Data Area;

The above table shows the address at which we can find the Communications (COM) ports
addresses in the BIOS Data Area. Each address will take up 2 bytes. The following sample program in C,
shows how you can read these locations to obtain the addresses of your communications ports.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 13

#include <stdio.h>
#include <dos.h>

void main(void)
{
 unsigned int far *ptraddr; /* Pointer to location of Port Addresses */
 unsigned int address; /* Address of Port */
 int a;

 ptraddr=(unsigned int far *)0x00000400;

 for (a = 0; a < 4; a++)
 {
 address = *ptraddr;
 if (address == 0)
 printf("No port found for COM%d \n",a+1);
 else
 printf("Address assigned to COM%d is %Xh\n",a+1,address);
 *ptraddr++;
 }
}

Table of Registers

Base Address DLAB Read/Write Abr. Register Name

+ 0 =0 Write - Transmitter Holding Buffer

=0 Read - Receiver Buffer

=1 Read/Write - Divisor Latch Low Byte

+ 1 =0 Read/Write IER Interrupt Enable Register

=1 Read/Write - Divisor Latch High Byte

+ 2 - Read IIR Interrupt Identification Register

- Write FCR FIFO Control Register

+ 3 - Read/Write LCR Line Control Register

+ 4 - Read/Write MCR Modem Control Register

+ 5 - Read LSR Line Status Register

+ 6 - Read MSR Modem Status Register

+ 7 - Read/Write - Scratch Register

Table 5 : Table of Registers

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 14

DLAB ?

You will have noticed in the table of registers that there is a DLAB column. When DLAB is set
to '0' or '1' some of the registers change. This is how the UART is able to have 12 registers (including the
scratch register) through only 8 port addresses. DLAB stands for Divisor Latch Access Bit. When DLAB
is set to '1' via the line control register, two registers become available from which you can set your
speed of communications measured in bits per second.

The UART will have a crystal which should oscillate around 1.8432 MHZ. The UART
incorporates a divide by 16 counter which simply divides the incoming clock signal by 16. Assuming we
had the 1.8432 MHZ clock signal, that would leave us with a maximum, 115,200 hertz signal making
the UART capable of transmitting and receiving at 115,200 Bits Per Second (BPS). That would be
fine for some of the faster modems and devices which can handle that speed, but others just wouldn't
communicate at all. Therefore the UART is fitted with a Programmable Baud Rate Generator which is
controlled by two registers.

Lets say for example we only wanted to communicate at 2400 BPS. We worked out that we
would have to divide 115,200 by 48 to get a workable 2400 Hertz Clock. The "Divisor", in this case 48,
is stored in the two registers controlled by the "Divisor Latch Access Bit". This divisor can be any
number which can be stored in 16 bits (ie 0 to 65535). The UART only has a 8 bit data bus, thus this is
where the two registers are used. The first register (Base + 0) when DLAB = 1 stores the "Divisor latch
low byte" where as the second register (base + 1 when DLAB = 1) stores the "Divisor latch high byte."

Below is a table of some more common speeds and their divisor latch high bytes & low bytes.
Note that all the divisors are shown in Hexadecimal.

Speed (BPS) Divisor (Dec) Divisor Latch High Byte Divisor Latch Low Byte

50 2304 09h 00h

300 384 01h 80h

600 192 00h C0h

2400 48 00h 30h

4800 24 00h 18h

9600 12 00h 0Ch

19200 6 00h 06h

38400 3 00h 03h

57600 2 00h 02h

115200 1 00h 01h

Table 6 : Table of Commonly Used Baudrate Divisors

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 15

Interrupt Enable Register (IER)

Bit Notes

Bit 7 Reserved

Bit 6 Reserved

Bit 5 Enables Low Power Mode (16750)

Bit 4 Enables Sleep Mode (16750)

Bit 3 Enable Modem Status Interrupt

Bit 2 Enable Receiver Line Status Interrupt

Bit 1 Enable Transmitter Holding Register Empty Interrupt

Bit 0 Enable Received Data Available Interrupt

Table 7 : Interrupt Enable Register

The Interrupt Enable Register could possibly be one of the easiest registers on a UART to
understand. Setting Bit 0 high enables the Received Data Available Interrupt which generates an
interrupt when the receiving register/FIFO contains data to be read by the CPU.

Bit 1 enables Transmit Holding Register Empty Interrupt. This interrupts the CPU when the
transmitter buffer is empty. Bit 2 enables the receiver line status interrupt. The UART will interrupt
when the receiver line status changes. Likewise for bit 3 which enables the modem status interrupt. Bits
4 to 7 are the easy ones. They are simply reserved. (If only everything was that easy!)

Interrupt Identification Register (IIR)

Bit Notes

Bits 6 : 7 Bit 6 Bit 7

0 0 No FIFO

0 1 FIFO Enabled but Unusable

1 1 FIFO Enabled

Bit 5 64 Byte Fifo Enabled (16750 only)

Bit 4 Reserved

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 16

Bit 3 0 Reserved on 8250, 16450

1 16550 Time-out Interrupt Pending

Bits 1 : 2 Bit 2 Bit 1

0 0 Modem Status Interrupt

0 1 Transmitter Holding Register Empty Interrupt

1 0 Received Data Available Interrupt

1 1 Receiver Line Status Interrupt

Bit 0 0 Interrupt Pending

1 No Interrupt Pending

Table 8 : Interrupt Identification Register

The interrupt identification register is a read only register. Bits 6 and 7 give status on the FIFO
Buffer. When both bits are '0' no FIFO buffers are active. This should be the only result you will get
from a 8250 or 16450. If bit 7 is active but bit 6 is not active then the UART has it's buffers enabled but
are unusable. This occurs on the 16550 UART where a bug in the FIFO buffer made the FIFO's
unusable. If both bits are '1' then the FIFO buffers are enabled and fully operational.

Bits 4 and 5 are reserved. Bit 3 shows the status of the time-out interrupt on a 16550 or higher.

Lets jump to Bit 0 which shows whether an interrupt has occurred. If an interrupt has occurred
it's status will shown by bits 1 and 2. These interrupts work on a priority status. The Line Status Interrupt
has the highest Priority, followed by the Data Available Interrupt, then the Transmit Register Empty
Interrupt and then the Modem Status Interrupt which has the lowest priority.

First In / First Out Control Register (FCR)

Bit Notes

Bits 6 : 7 Bit 7 Bit 6 Interrupt Trigger Level

0 0 1 Byte

0 1 4 Bytes

1 0 8 Bytes

1 1 14 Bytes

Bit 5 Enable 64 Byte FIFO (16750 only)

Bit 4 Reserved

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 17

Bit 3 DMA Mode Select. Change status of RXRDY & TXRDY pins
from mode 1 to mode 2.

Bit 2 Clear Transmit FIFO

Bit 1 Clear Receive FIFO

Bit 0 Enable FIFO's

Table 9 : FIFO Control Register

The FIFO register is a write only register. This register is used to control the FIFO (First In / First
Out) buffers which are found on 16550's and higher.

Bit 0 enables the operation of the receive and transmit FIFO's. Writing a '0' to this bit will disable
the operation of transmit and receive FIFO's, thus you will loose all data stored in these FIFO buffers.

Bit's 1 and 2 control the clearing of the transmit or receive FIFO's. Bit 1 is responsible for the
receive buffer while bit 2 is responsible for the transmit buffer. Setting these bits to 1 will only clear the
contents of the FIFO and will not affect the shift registers. These two bits are self resetting, thus you
don't need to set the bits to '0' when finished.

Bit 3 enables the DMA mode select which is found on 16550 UARTs and higher. More on this
later. Bits 4 and 5 are those easy type again, Reserved.

Bits 6 and 7 are used to set the triggering level on the Receive FIFO. For example if bit 7 was set
to '1' and bit 6 was set to '0' then the trigger level is set to 8 bytes. When there is 8 bytes of data in the
receive FIFO then the Received Data Available interrupt is set. See (IIR)

Line Control Register (LCR)

Bit Notes

Bit 7 1 Divisor Latch Access Bit

0 Access to Receiver buffer, Transmitter buffer & Interrupt
Enable Register

Bit 6 Set Break Enable

Bits 3 : 5 Bit 5 Bit 4 Bit 3 Parity Select

X X 0 No Parity

0 0 1 Odd Parity

0 1 1 Even Parity

1 0 1 High Parity (Sticky)

1 1 1 Low Parity (Sticky)

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 18

Bit 2 Length of Stop Bit

0 One Stop Bit

1 2 Stop bits for words of length 6,7 or 8 bits or 1.5 Stop
Bits for Word lengths of 5 bits.

Bits 0 : 1 Bit 1 Bit 0 Word Length

0 0 5 Bits

0 1 6 Bits

1 0 7 Bits

1 1 8 Bits

Table 10 : Line Control Register

The Line Control register sets the basic parameters for communication. Bit 7 is the Divisor Latch
Access Bit or DLAB for short. We have already talked about what it does. (See DLAB?) Bit 6 Sets break
enable. When active, the TD line goes into "Spacing" state which causes a break in the receiving UART.
Setting this bit to '0' Disables the Break.

Bits 3,4 and 5 select parity. If you study the 3 bits, you will find that bit 3 controls parity. That is,
if it is set to '0' then no parity is used, but if it is set to '1' then parity is used. Jumping to bit 5, we can see
that it controls sticky parity. Sticky parity is simply when the parity bit is always transmitted and checked
as a '1' or '0'. This has very little success in checking for errors as if the first 4 bits contain errors but the
sticky parity bit contains the appropriately set bit, then a parity error will not result. Sticky high parity is
the use of a '1' for the parity bit, while the opposite, sticky low parity is the use of a '0' for the parity bit.

If bit 5 controls sticky parity, then turning this bit off must produce normal parity provided bit 3
is still set to '1'. Odd parity is when the parity bit is transmitted as a '1' or '0' so that there is a odd number
of 1's. Even parity must then be the parity bit produces and even number of 1's. This provides better error
checking but still is not perfect, thus CRC-32 is often used for software error correction. If one bit
happens to be inverted with even or odd parity set, then a parity error will occur, however if two bits are
flipped in such a way that it produces the correct parity bit then an parity error will no occur.

Bit 2 sets the length of the stop bits. Setting this bit to '0' will produce one stop bit, however
setting it to '1' will produce either 1.5 or 2 stop bits depending upon the word length. Note that the
receiver only checks the first stop bit.

Bits 0 and 1 set the word length. This should be pretty straight forward. A word length of 8 bits is
most commonly used today.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 19

Modem Control Register (MCR)

Bit Notes

Bit 7 Reserved

Bit 6 Reserved

Bit 5 Autoflow Control Enabled (16750 only)

Bit 4 LoopBack Mode

Bit 3 Aux Output 2

Bit 2 Aux Output 1

Bit 1 Force Request to Send

Bit 0 Force Data Terminal Ready

Table 11 : Modem Control Register

The Modem Control Register is a Read/Write Register. Bits 5,6 and 7 are reserved. Bit 4
activates the loopback mode. In Loopback mode the transmitter serial output is placed into marking
state. The receiver serial input is disconnected. The transmitter out is looped back to the receiver in.
DSR, CTS, RI & DCD are disconnected. DTR, RTS, OUT1 & OUT2 are connected to the modem
control inputs. The modem control output pins are then place in an inactive state. In this mode any data
which is placed in the transmitter registers for output is received by the receiver circuitry on the same
chip and is available at the receiver buffer. This can be used to test the UARTs operation.

Aux Output 2 maybe connected to external circuitry which controls the UART-CPU interrupt process.
Aux Output 1 is normally disconnected, but on some cards is used to switch between a 1.8432MHZ crystal
to a 4MHZ crystal which is used for MIDI. Bits 0 and 1 simply control their relevant data lines. For example
setting bit 1 to '1' makes the request to send line active.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 20

Line Status Register (LSR)

Bit Notes

Bit 7 Error in Received FIFO

Bit 6 Empty Data Holding Registers

Bit 5 Empty Transmitter Holding Register

Bit 4 Break Interrupt

Bit 3 Framing Error

Bit 2 Parity Error

Bit 1 Overrun Error

Bit 0 Data Ready

Table 12 : Line Status Register

The line status register is a read only register. Bit 7 is the error in received FIFO bit. This bit is
high when at least one break, parity or framing error has occurred on a byte which is contained in the
FIFO.

When bit 6 is set, both the transmitter holding register and the shift register are empty. The
UART's holding register holds the next byte of data to be sent in parallel fashion. The shift register is
used to convert the byte to serial, so that it can be transmitted over one line. When bit 5 is set, only the
transmitter holding register is empty. So what's the difference between the two? When bit 6, the
transmitter holding and shift registers are empty, no serial conversions are taking place so there should
be no activity on the transmit data line. When bit 5 is set, the transmitter holding register is empty, thus
another byte can be sent to the data port, but a serial conversion using the shift register may be taking
place.

The break interrupt (Bit 4) occurs when the received data line is held in a logic state '0' (Space)
for more than the time it takes to send a full word. That includes the time for the start bit, data bits, parity
bits and stop bits.

A framing error (Bit 3) occurs when the last bit is not a stop bit. This may occur due to a timing
error. You will most commonly encounter a framing error when using a null modem linking two
computers or a protocol analyzer when the speed at which the data is being sent is different to that of
what you have the UART set to receive it at.

A overrun error normally occurs when your program can't read from the port fast enough. If you
don't get an incoming byte out of the register fast enough, and another byte just happens to be received,
then the last byte will be lost and a overrun error will result.

Bit 0 shows data ready, which means that a byte has been received by the UART and is at the
receiver buffer ready to be read.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 21

Modem Status Register (MSR)

Bit Notes

Bit 7 Carrier Detect

Bit 6 Ring Indicator

Bit 5 Data Set Ready

Bit 4 Clear To Send

Bit 3 Delta Data Carrier Detect

Bit 2 Trailing Edge Ring Indicator

Bit 1 Delta Data Set Ready

Bit 0 Delta Clear to Send

Table 13 : Modem Status Register

Bit 0 of the modem status register shows delta clear to send, delta meaning a change in, thus
delta clear to send means that there was a change in the clear to send line, since the last read of this
register. This is the same for bits 1 and 3. Bit 1 shows a change in the Data Set Ready line where as Bit 3
shows a change in the Data Carrier Detect line. Bit 2 is the Trailing Edge Ring Indicator which indicates
that there was a transformation from low to high state on the Ring Indicator line.

Bits 4 to 7 show the current state of the data lines when read. Bit 7 shows Carrier Detect, Bit 6
shows Ring Indicator, Bit 5 shows Data Set Ready & Bit 4 shows the status of the Clear To Send line.

Scratch Register

The scratch register is not used for communications but rather used as a place to leave a byte of
data. The only real use it has is to determine whether the UART is a 8250/8250B or a 8250A/16450 and
even that is not very practical today as the 8250/8250B was never designed for AT's and can't hack the
bus speed.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 22

Part 3 : Programming (PC's)

Polling or Interrupt Driven?

When writing a communications program you have two methods available to you. You can poll
the UART, to see if any new data is available or you can set up an interrupt handler to remove the data
from the UART when it generates a interrupt. Polling the UART is a lot slower method, which is very
CPU intensive thus can only have a maximum speed of around 34.8 KBPS before you start losing data.
Some newer Pentium Pro's may be able to achieve better rates that this. The other option is using a
Interrupt handler, and that's what we have used here. It will very easily support 115.2K BPS, even on
low end computers.

Termpoll.c - A sample Comms Program using Polling

 /* Name : Sample Comm's Program - Polled Version - termpoll.c */

 /* Written By : Craig Peacock <cpeacock@senet.com.au> */

 /* Date : Saturday 22nd February 1997 */

 /* Copyright 1997 CRAIG PEACOCK <cpeacock@senet.com.au> */

 /* See http://www.senet.com.au/~cpeacock/serial.htm */

 /* For More Information */

#include <dos.h>

#include <stdio.h>

#include <conio.h>

#define PORT1 0x3F8

/* Defines Serial Ports Base Address */

/* COM1 0x3F8 */

/* COM2 0x2F8 */

/* COM3 0x3E8 */

/* COM4 0x2E8 */

void main(void)

{

 int c;

 int ch;

 outportb(PORT1 + 1 , 0); /* Turn off interrupts - Port1 */

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 23

 /* PORT 1 - Communication Settings */

 outportb(PORT1 + 3 , 0x80); /* SET DLAB ON */

 outportb(PORT1 + 0 , 0x03); /* Set Baud rate - Divisor Latch Low Byte */

 /* Default 0x03 = 38,400 BPS */

 /* 0x01 = 115,200 BPS */

 /* 0x02 = 56,700 BPS */

 /* 0x06 = 19,200 BPS */

 /* 0x0C = 9,600 BPS */

 /* 0x18 = 4,800 BPS */

 /* 0x30 = 2,400 BPS */

 outportb(PORT1 + 1 , 0x00); /* Set Baud rate - Divisor Latch High Byte */

 outportb(PORT1 + 3 , 0x03); /* 8 Bits, No Parity, 1 Stop Bit */

 outportb(PORT1 + 2 , 0xC7); /* FIFO Control Register */

 outportb(PORT1 + 4 , 0x0B); /* Turn on DTR, RTS, and OUT2 */

 printf("\nSample Comm's Program. Press ESC to quit \n");

 do { c = inportb(PORT1 + 5); /* Check to see if char has been */

 /* received. */

 if (c & 1) {ch = inportb(PORT1); /* If so, then get Char */

 printf("%c",ch);} /* Print Char to Screen */

 if (kbhit()){ch = getch(); /* If key pressed, get Char */

 outportb(PORT1, ch);} /* Send Char to Serial Port */

 } while (ch !=27); /* Quit when ESC (ASC 27) is pressed */

}

Polling the UART should not be dismissed totally. It's a good method for diagnostics. If you have no
idea of what address your card is at or what IRQ you are using you can poll the UART at several
different addresses to firstly find which port your card is at and which one your modem is attached to.
Once you know this information, then you can set up the Interrupt routines for the common IRQs and by
enabling one IRQ at a time using the Programmable Interrupt Controller you can find out your IRQ, You
don't even need a screw driver!

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 24

Buff1024.c - An Interrupt Driven Sample Comms Program

 /* Name : Sample Comm's Program - 1024 Byte Buffer - buff1024.c */

 /* Written By : Craig Peacock <cpeacock@senet.com.au> */

 /* Copyright 1997 CRAIG PEACOCK <cpeacock@senet.com.au> */

 /* See http://www.senet.com.au/~cpeacock/serial.htm */

 /* For More Information */

#include <dos.h>

#include <stdio.h>

#include <conio.h>

#define PORT1 0x2E8 /* Port Address Goes Here */

/* Defines Serial Ports Base Address */

/* COM1 0x3F8 */

/* COM2 0x2F8 */

/* COM3 0x3E8 */

/* COM4 0x2E8 */

#define INTVECT 0x0B /* Com Port's IRQ here */

 /* (Must also change PIC setting) */

int bufferin = 0;

int bufferout = 0;

char ch;

char buffer[1025];

void interrupt (*oldport1isr)();

void interrupt PORT1INT() /* Interrupt Service Routine (ISR) for PORT1 */

{

 int c;

 do { c = inportb(PORT1 + 5);

 if (c & 1) {buffer[bufferin] = inportb(PORT1);

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 25

 bufferin++;

 if (bufferin == 1024) bufferin = 0;}

 }while (c & 1);

 outportb(0x20,0x20);

}

void main(void)

{

 int c;

 outportb(PORT1 + 1 , 0); /* Turn off interrupts - Port1 */

 oldport1isr = getvect(INTVECT); /* Save old Interrupt Vector for */

 /* later recovery */

 setvect(INTVECT, PORT1INT); /* Set Interrupt Vector Entry */

 /* COM1 - 0x0C */

 /* COM2 - 0x0B */

 /* COM3 - 0x0C */

 /* COM4 - 0x0B */

 /* PORT 1 - Communication Settings */

 outportb(PORT1 + 3 , 0x80); /* SET DLAB ON */

 outportb(PORT1 + 0 , 0x03); /* Set Baud rate - Divisor Latch Low Byte */

 /* Default 0x03 = 38,400 BPS */

 /* 0x01 = 115,200 BPS */

 /* 0x02 = 56,700 BPS */

 /* 0x06 = 19,200 BPS */

 /* 0x0C = 9,600 BPS */

 /* 0x18 = 4,800 BPS */

 /* 0x30 = 2,400 BPS */

 outportb(PORT1 + 1 , 0x00); /* Set Baud rate - Divisor Latch High Byte */

 outportb(PORT1 + 3 , 0x03); /* 8 Bits, No Parity, 1 Stop Bit */

 outportb(PORT1 + 2 , 0xC7); /* FIFO Control Register */

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 26

 outportb(PORT1 + 4 , 0x0B); /* Turn on DTR, RTS, and OUT2 */

 outportb(0x21,(inportb(0x21) & 0xF7)); /* Set Programmable Interrupt */

 /* Controller */

 /* COM1 (IRQ4) - 0xEF */

 /* COM2 (IRQ3) - 0xF7 */

 /* COM3 (IRQ4) - 0xEF */

 /* COM4 (IRQ3) - 0xF7 */

 outportb(PORT1 + 1 , 0x01); /* Interrupt when data received */

 printf("\nSample Comm's Program. Press ESC to quit \n");

 do {

 if (bufferin != bufferout){ch = buffer[bufferout];

 bufferout++;

 if (bufferout == 1024) bufferout = 0;

 printf("%c",ch);}

 if (kbhit()){c = getch();

 outportb(PORT1, c);}

 } while (c !=27);

 outportb(PORT1 + 1 , 0); /* Turn off interrupts - Port1 */

 outportb(0x21,(inportb(0x21) | 0x08)); /* MASK IRQ using PIC */

 /* COM1 (IRQ4) - 0x10 */

 /* COM2 (IRQ3) - 0x08 */

 /* COM3 (IRQ4) - 0x10 */

 /* COM4 (IRQ3) - 0x08 */

 setvect(INTVECT, oldport1isr); /* Restore old interrupt vector */

}

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 27

Note: The source code on the earier pages is not a really good example on how to
program but is rather cut down to size giving quick results, and making it easier
to understand. Upon executing your communications program, it would be wise
to store the status of the UART registers, so that they all can be restored before
you quit the program. This is to cause the least upset to other programs which
may also be trying to use the communications ports.

The first step to using interrupts is to work out which interrupt services your serial card. Table 13 shows
the base addresses and IRQ's of some standard ports. IRQ's 3 and 4 are the two most commonly used.
IRQ 5 and 7 are sometimes used.

Interrupt Vectors

Once we know the IRQ the next step is to find it's interrupt vector or software interrupt as some
people may call it. Basically any 8086 processor has a set of 256 interrupt vectors numbered 0 to 255.
Each of these vectors contains a 4 byte code which is an address of the Interrupt Service Routine (ISR).
Fortunately C being a high level language, takes care of the addresses for us. All we have to know is the
actual interrupt vector.

INT (Hex) IRQ Common Uses

08 0 System Timer

09 1 Keyboard

0A 2 Redirected

0B 3 Serial Comms. COM2/COM4

0C 4 Serial Comms. COM1/COM3

0D 5 Reserved/Sound Card

0E 6 Floppy Disk Controller

0F 7 Parallel Comms.

70 8 Real Time Clock

71 9 Reserved

72 10 Reserved

73 11 Reserved

74 12 PS/2 Mouse

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 28

75 13 Maths Co-Processor

76 14 Hard Disk Drive

77 15 Reserved

Table 14 : Interrupt Vectors (Hardware Only)

The above table shows only the interrupts which are associated with IRQ's. The other 240 are of
no interest to us when programming RS-232 type communications.

For example if we were using COM3 which has a IRQ of 4, then the interrupt vector would be
0C in hex. Using C we would set up the vector using the instruction setvect(0x0C, PORT1INT);
where PORT1INT would lead us to a set of instructions which would service the interrupt.

However before we proceed with that I should say that it is wise to record the old vectors address
and then restore that address once the program is finished. This is done using oldport1isr =
getvect(INTVECT); where oldport1isr is defined using void interrupt (*oldport1isr)();

Not only should you store the old vector addresses, but also the configuration the UART was in.
Why you Ask? Well it's simple, I wrote a communications program which was fully featured in the chat
side of things. It had line buffering, so no body could see my spelling mistakes or how slowly I typed. It
included anti-bombing routines and the list goes on. However I couldn't be bothered to program any file
transfer protocols such as Zmodem etc into my communications program. Therefore I either had to run
my communications program in the background of Telemate using my communications program for chat
and everything else it was designed for and using Telemate to download files. Another method was to
run, say Smodem as a external protocol to my communications program.

Doing this however would mean that my communications program would override the original
speed, parity etc and then when I returned to the original communications program, everything stopped.
Therefore by saving the old configuration, you can revert back to it before you hand the UART back
over to the other program. Makes sense? However if you don't have any of these programs you can save
yourself a few lines of code. This is what we have done here.

Interrupt Service Routine (ISR)

Now, could we be off track just a little? Yes that's right, PORT1INT is the label to our interrupt
handler called a Interrupt Service Routine (ISR). You can put just about anything in here you want.
However calling some DOS routines can be a problem.

void interrupt PORT1INT()
{
 int c;
 do { c = inportb(PORT1 + 5);
 if (c & 1) {
 buffer[bufferin] = inportb(PORT1);
 bufferin++;
 if (bufferin == 1024) bufferin = 0;
 }
 } while (c & 1);
outportb(0x20,0x20);
}

From the example above we check to see if there is a character to receive and if their is we

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 29

remove it from the UART and place it in a buffer contained in memory. We keep on checking the
UART, in case FIFO's are enabled, so we can get all data available at the time of interrupt.

The last line contains the instruction outportb(0x20,0x20); which tells the Programmable
Interrupt Controller that the interrupt has finished. The Programmable Interrupt Controller (PIC) is what
we must go into now. All of the routines above, we have assumed that everything is set up ready to go.
That is all the UART's registers are set correctly and that the Programmable Interrupt Controller is set.

The Programmable Interrupt Controller handles hardware interrupts. Most PC's will have two of
them located at different addresses. One handles IRQ's 0 to 7 and the other IRQ's 8 to 15. Mainly Serial
communications interrupts reside on IRQ's under 7, thus PIC1 is used, which is located at 0020 Hex.

Bit Disable IRQ Function

7 IRQ7 Parallel Port

6 IRQ6 Floppy Disk Controller

5 IRQ5 Reserved/Sound Card

4 IRQ4 Serial Port

3 IRQ3 Serial Port

2 IRQ2 PIC2

1 IRQ1 Keyboard

0 IRQ0 System Timer

Table 15 : PIC1 Control Word (0x21)

Multi-Comm ports are getting quite common, thus table 16 includes data for PIC2 which is
located at 0xA0. PIC2 is responsible for IRQ's 8 to 15. It operates in exactly the same way than PIC1
except that EOI's (End of Interrupt) goes to port 0xA0 while the disabling (Masking) of IRQ's are done
using port 0xA1.

Bit Disable IRQ Function

7 IRQ15 Reserved

6 IRQ14 Hard Disk Drive

5 IRQ13 Maths Co-Processor

4 IRQ12 PS/2 Mouse

3 IRQ11 Reserved

2 IRQ10 Reserved

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 30

1 IRQ9 IRQ2

0 IRQ8 Real Time Clock

Table 16 : PIC2 Control Word (0xA1)

Most of the PIC's initiation is done by BIOS. All we have to worry about is two instructions. The
first one is outportb(0x21,(inportb(0x21) & 0xEF); which selects which interrupts we want to
Disable (Mask). So if we want to enable IRQ4 we would have to take 0x10 (16) from 0xFF (255) to
come up with 0xEF (239). That means we want to disable IRQ's 7,6,5,3,2,1 and 0, thus enabling IRQ 4.

But what happens if one of these IRQs are already enabled and then we come along and disable
it? Therefore we input the value of the register and using the & function output the byte back to the
register with our changes using the instruction outportb(0x21,(inportb(0x21) & 0xEF);. For
example if IRQ5 is already enabled before we come along, it will enable both IRQ4 and IRQ5 so we
don't make any changes which may affect other programs or TSR's.

The other instruction is outportb(0x20,0x20); which signals an end of interrupt to the PIC.
You use this command at the end of your interrupt service routine, so that interrupts of a lower priority
will be accepted.

UART Configuration

Now we get to the UART settings (Finally)

It's a good idea to turn off the interrupt generation on the UART as the first instruction. Therefore
your initialization can't get interrupted by the UART. I've then chosen to set up our interrupt vectors at
this point. The next step is to set the speed at which you wish to communicate at. If you remember the
process, we have to set bit 7 (The DLAB) of the LCR so we can access the Divisor Latch High and Low
Bytes. We have decided to set the speed to 38,400 Bits per second which should be find for 16450's and
16550's. This requires a divisor of 3, thus our divisor latch high byte will be 0x00 and a divisor latch low
byte, 0x03.

In today's standards the divisor low latch byte is rarely used but it still pays us to write 0x00 to
the register just in case the program before us just happened to set the UART at a very very low speed.
BIOS will normally set UARTs at 2400 BPS when the computer is first booted up which still doesn't
require the Divisor Latch Low byte.

The next step would be to turn off the Divisor latch access bit so we can get to the Interrupt
Enable Register and the receiver/transmitter buffers. What we could do is just write a 0x00 to the
register clearing it all, but considering we have to set up our word length, parity as so forth in the line
control register we can do this at the same time. We have decided to set up 8 bits, no parity and 1 stop bit
which is normally used today. Therefore we write 0x03 to the line control register which will also turn
off the DLAB for us saving one more I/O instruction.

The next line of code turns on the FIFO buffers. We have made the trigger level at 14 bytes, thus
bits 6 and 7 are on. We have also enabled the FIFO's (bit 0). It's also good practice to clear out the FIFO
buffers on initialization. This will remove any rubbish which the last program may of left in the FIFO
buffers. Due to the fact that these two bits are self resetting, we don't have to go any further and turn off
these bits. If my arithmetic is correct all these bits add up to 0xC7 or 199 for those people which still
work in decimal.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 31

Then DTR, RTS and OUT 2 is taken active by the instruction outportb(PORT1 + 4,0x0B);.
Some cards (Both of Mine) require OUT2 active for interrupt requests thus I'm normally always take it
high. All that is left now is to set up our interrupts which has be deliberately left to last as to not interrupt
our initialization. Our interrupt handler is only interested in new data being available so we have only set
the UART to interrupt when data is received.

Main Routine (Loop)

Now we are left with,

do {
 if (bufferin != bufferout){
 ch = buffer[bufferout];
 bufferout++;
 if (bufferout == 1024) bufferout = 0;
 printf("%c",ch);
 }
 if (kbhit()){
 c = getch();
 outportb(PORT1, c);
 }
 } while (c !=27);

which keeps repeating until c = 27. This occurs when the ESC key is hit.

The next if statement checks to see if a key has been hit. (kbhit()) If so, it gets the character
using the getch() statement and outputs it to the receiver buffer. The UART then transmits the
character to the modem. What we have assumed here, is that the person using the Communications
Program can't type as fast as the UART can send. However if the program wishes to send something,
then a check should be made to see if BIT 5 of the Line Status Register is set before attempting to send a
byte to the transmitter register.

For more information on Interrupts, try Using Interrupts,
http://www.geocities.com/SiliconValley/Bay/8302/interupt.pdf (62k)

Determining the type of UART via software

The type of UART you have installed in your system can be determined without even needing a
screwdriver in most cases. As you can see from the Types of UARTs, each UART has minor differences,
all we have to do it test these.

The first procedure we do is to set bit 0 to '1' in the FIFO control register. This tries to enable the
FIFO buffers. Then we read bits 6 and 7 from the interrupt identification register. If both bits are '1' then
the FIFO buffers are enabled. This would mean the UART is a 16550a. If the FIFO's were enabled but
not usable then it would be a 16550. If there is no FIFO buffer enabled it is most likely to be a 16450
UART, but could be a 8250, 8250A or 8250B on very old systems.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 32

AT's have a fast bus speed which the 8250 series of UART can't handle to well thus it is very
unlikely to be found in any AT. However if you wish to test for them as well you can follow the same
test as above to distinguish 16550's or 16550A's from the rest. If no FIFOs are enabled then a possible
UART is the 16450, 8250, 8250A or 8250B. Once it is established the it could be one of these four
chips, try writing a byte to the scratch register and then read it back and compare the results. If the results
match then you must have a scratch register, if they don't you either don't have a scratch register, or it
doesn't work to well.

From the descriptions of the UART above if you read back your byte from the scratch register
then the UART must be a 16450 or 8250A. (Both have scratch registers) If you don't read back your byte
then it's either a 8250 or 8250B.

The 16750 has 64 byte FIFO's, thus the easiest way to test for it's presence is to enable the 64
byte buffer using the FIFO Control Register and then read back the status of the Interrupt Identification
Register. However I have never tested this.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 33

Part 4 : Interfacing Devices to RS-232 Ports

RS-232 Waveforms

So far we have introduced RS-232 Communications in relation to the PC. RS-232
communication is asynchronous. That is a clock signal is not sent with the data. Each word is
synchronized using it's start bit, and an internal clock on each side, keeps tabs on the timing.

Figure 4 : TTL/CMOS Serial Logic Waveform

The diagram above, shows the expected waveform from the UART when using the common 8N1
format. 8N1 signifies 8 Data bits, No Parity and 1 Stop Bit. The RS-232 line, when idle is in the Mark
State (Logic 1). A transmission starts with a start bit which is (Logic 0). Then each bit is sent down the
line, one at a time. The LSB (Least Significant Bit) is sent first. A Stop Bit (Logic 1) is then appended to
the signal to make up the transmission.

The diagram, shows the next bit after the Stop Bit to be Logic 0. This must mean another word is
following, and this is it's Start Bit. If there is no more data coming then the receive line will stay in it's
idle state(logic 1). We have encountered something called a "Break" Signal. This is when the data line is
held in a Logic 0 state for a time long enough to send an entire word. Therefore if you don't put the line
back into an idle state, then the receiving end will interpret this as a break signal.

The data sent using this method, is said to be framed. That is the data is framed between a Start
and Stop Bit. Should the Stop Bit be received as a Logic 0, then a framing error will occur. This is
common, when both sides are communicating at different speeds.

The above diagram is only relevant for the signal immediately at the UART. RS-232 logic levels
uses +3 to +25 volts to signify a "Space" (Logic 0) and -3 to -25 volts for a "Mark" (logic 1). Any
voltage in between these regions (ie between +3 and -3 Volts) is undefined. Therefore this signal is put
through a "RS-232 Level Converter". This is the signal present on the RS-232 Port of your computer,
shown below.

Figure 5 : RS-232 Logic Waveform

The above waveform applies to the Transmit and Receive lines on the RS-232 port. These lines
carry serial data, hence the name Serial Port. There are other lines on the RS-232 port which, in essence
are Parallel lines. These lines (RTS, CTS, DCD, DSR, DTR, RTS and RI) are also at RS-232 Logic
Levels.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 34

RS-232 Level Converters

Almost all digital devices which we use require either TTL or CMOS logic levels. Therefore the
first step to connecting a device to the RS-232 port is to transform the RS-232 levels back into 0 and 5
Volts. As we have already covered, this is done by RS-232 Level Converters.

Two common RS-232 Level Converters are the 1488 RS-232 Driver and the 1489 RS-232
Receiver. Each package contains 4 inverters of the one type, either Drivers or Receivers. The driver
requires two supply rails, +7.5 to +15v and -7.5 to -15v. As you could imagine this may pose a problem
in many instances where only a single supply of +5V is present. However the advantages of these I.C's
are they are cheap.

Above: (Figure 6) Pinouts for the MAX-232,
RS-232 Driver/Receiver.

Right: (Figure 7) Typical MAX-232 Circuit.

Another device is the MAX-232. It includes a Charge Pump, which generates +10V and -10V
from a single 5v supply. This I.C. also includes two receivers and two transmitters in the same package.
This is handy in many cases when you only want to use the Transmit and Receive data Lines. You don't
need to use two chips, one for the receive line and one for the transmit. However all this convenience
comes at a price, but compared with the price of designing a new power supply it is very cheap.

There are also many variations of these devices. The large value of capacitors are not only bulky,
but also expensive. Therefore other devices are available which use smaller capacitors and even some
with inbuilt capacitors. (Note : Some MAX-232's can use 1 micro farad Capacitors). However the MAX-
232 is the most common, and thus we will use this RS-232 Level Converter in our examples.

Making use of the Serial Format

In order to do anything useful with our Serially transmitted data, we must convert it back to
Parallel. (You could connect an LED to the serial port and watch it flash if you really want too, but it's
not extremely useful). This in the past has been done with the use of UART's. However with the
popularity of cheap Microcontroller's, these can be more suited to many applications. We will look into
the advantages and disadvantages of each method.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 35

8250 and Compatible UARTs

We have already looked at one type of UART, the 8250 and compatibles found in your PC.
These devices have configuration registers accessible via the data and address buses which have to be
initialized before use. This is not a problem if your device which you are building uses a Microprocessor.
However if you are making a stand alone device, how are you going to initialize it?

Most Microprocessors / Microcontrollers these days can be brought with build-in Serial
Communication Interfaces (SCI). Therefore there is little need to connect a 40 pin 16550 to, for example
a 68HC11 when you can buy one built in. If you are still in love with the Z-80 or 8086 then an 16550
may be option! (or if you are like myself, the higher chip count the better. After all it looks more
complicated and impressive! - But a headache to debug!)

Figure 8 : Pin Diagrams for 16550, 16450 & 8250 UARTs

For more information on the 16550 and compatible UART's see The UART (8250 and Compatibles) in
Part One of this tutorial or consult the PC16550D data sheet from National Semiconductor
(http://www.natsemi.com)

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 36

CDP6402, AY-5-1015 / D36402R-9 etc UARTs

Figure 9 : Pinout of CDP6402

 There are UARTs such as the CDP6402, AY-5-
1015 / D36402R-9 and compatibles. These differ from the
8250 and compatibles, by the fact that they have separate
Receive and Transmit data buses and can be configured by
connecting certain pins to various logic levels. These are
ideal for applications where you don't have a
Microprocessor available. Such an example is if you want
to connect a ADC0804 (Analog to Digital Converter) to
the UART, or want to connect a LCD Display to the Serial
Line. These common devices use a 8 bit parallel data bus.

 The CDP6402's Control Register is made up of
Parity Inhibit (PI), Stop Bit Select (SBS), Character
Length Select (CLS1 and 2) and Even Parity Enable
(EPE). These inputs can be latched using the Control
Register Load (CRL) or if you tie this pin high, changes
made to these pins will immediately take effect.

Pin Number Abbr. Full Name Notes

Pin 1 VDD + 5v Supply
Rail

 Connect to Supply (VCC +5V)

Pin 2 NC Not
Connected

 Not Connected.

Pin 3 GND Ground Ground.

Pin 4 RRD Receiver
Register
Disable

When driven high, outputs RBR8:RBR1 are High
Impedance.

Pin 5:12 RBR8:
RBR1

Receiver
Buffer
Register

Receiver's Data Bus

Pin 13 PE Parity Error When High, A Parity Error Has Occurred.

Pin 14 FE Framing
Error

When High, A Framing Error Has Occurred. i.e. The
Stop Bit was not a Logic 1.

Pin 15 OE Overrun
Error

When High, Data has been received but the nData
Received Reset had not yet been activated.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 37

Pin 16 SFD Status Flag
Disable

When High, Status Flag Outputs (PE, FE, OE, DR and
TBRE) are High Impedance

Pin 17 RRC Receiver
Register
Clock

x16 Clock input for the Receiver Register.

Pin 18 nDRR Data
Received
Reset

Active Low. When low, sets Data received Output Low
(i.e. Clears DR)

Pin 19 DR Data
Received

When High, Data has been received and placed on
outputs RBR8:RBR1.

Pin 20 RRI Receiver
Register In

RXD - Serial Input. Connect to Serial Port, Via RS-232
receiver.

Pin 21 MR Master Reset Resets the UART. UART should be reset after applying
power.

Pin 22 TBRE Transmitter
Buffer
Register
Empty

When High, indicates that Transmitter Buffer Register
is Empty, thus all bits including the stop bit have been
sent.

Pin 23 nTBRL Transmitter
Buffer Load /
Strobe

Active Low. When low, data present on TBR8:TBR1 is
placed in Transmitter Buffer Register. A Low to High
Transition on this pin, then sends the data.

Pin 24 TRE Transmitter
Register
Empty

When High, Transmitter Register is Empty, thus can
accept another byte of data to be sent.

Pin 25 TRO Transmitter
Register Out
(TXD)

TXD - Serial Output. Connect to Serial Port, Via RS-
232 Transmitter.

Pin 26:33 TBR8:
TBR1

Transmitter
Buffer
Register

Data Bus, for Transmitter. Place Data here which you
want to send.

Pin 34 CRL Control
Register
Load

When High, Control Register (PI, SBS, CLS2, CLS1,
EPE) is Loaded. Can be tied high, so changes on these
pins occur instantaneously.

Pin 35 PI Parity Inhibit When High, No Parity is Used for Both Transmit and
Receive. When Low, Parity is Used.

Pin 36 SBS Stop Bit
Select

A High selects 2 stop bits. (1.5 for 5 Character Word
Lengths) A Low selects one stop bit.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 38

Pin 37:38 CLS2:
CLS1

Character
Length Select

Selects Word Length. 00 = 5 Bits, 01 = 6 Bits, 10 = 7
Bits and 11 = 8 Bits.

Pin 39 EPE Even Parity
Enable

When High, Even Parity is Used, When Low, Odd
Parity is Used.

Pin 40 TRC Transmitter
Register
Clock

16x Clock input for Transmitter.

Table 18 : Pin Description for CDP6402, AY-5-1015 / D36402R-9 and compatible UART's

However one disadvantage of these chips over the 8250's is that these UART's have no inbuilt
Programmable Baud Rate Generator, and no facility to connect a crystal directly to it. While there are
Baud Rate Generator Chips such as the AY-5-8116, a more cheaper (and common) alternative is the
74HC4060 14-bit Binary Counter and Oscillator.

The 74HC4060, being a 14 bit binary counter/divider only has outputs for some of it's stages.
Only Q4 to Q14 is available for use as they have external connections. This means higher Baud Rates are
not obtainable from common crystals, such as the 1.8432 Mhz and 2.4576 Mhz. The UART requires a
clock rate 16 times higher than the Baud Rate you will be using. eg A baud rate of 9600 BPS requires a
input clock frequency of 153.6 Khz.

The 1.8432 Mhz crystal gives some unfamiliar Baud Rates. While many of these won't be
accepted by terminal programs or some hardware, they are still acceptable if you write your own serial
programs. For example the PC's baud rate divisor for 7200 BPS is 16, 3600 BPS is 32, 1800 BPS is 64
etc. If you require higher speeds, then it is possible to connect the UART to the OUT2 pin. This
connection utilizes the oscillator, but has no frequency division applied. Using OUT2 with a 1.8432 Mhz
crystal connected gives a baud rate of 115,200 BPS. The CMOS CDP6402 UART can handle up to 200
KBPS at 5 volts, however your MAX-232 may be limited to 120 KBPS, but is still within range.

Output 1.8432Mhz 2.4546Mhz

Out 2 115.2 KBPS 153.6 KBPS

Q4 7200 BPS 9600 BPS

Q5 3600 BPS 4800 BPS

Q6 1800 BPS 2400 BPS

Q7 900 BPS 1200 BPS

Q8 450 BPS 600 BPS

Q9 225 BPS 300 BPS

Table 19 : Possible Baud Rates using a 74HC4060

Figure 10 : Baud Rate Generator using a 74HC4060

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 39

Microcontrollers

It is also possible to use microcontrollers to transmit and receive Serial data. As we have
already covered, some of these MCU's (Micro Controller Units) have built in UART's among
other things. Take the application we have used above. We want to monitor analog voltages
using a ADC and then send them serially to the PC. If the Microcontroller also has a ADC built
in along with the UART or SCI, then we could simply program the device and connect a RS-232
Line Driver. This would minimize your chip count and make your PCB much smaller.

Take the second example, displaying the serial data to a common 16 character x 2 line
LCD display. A common problem with the LCD modules, is they don't accept cartridge returns,
line-feeds, form-feeds etc. By using a microcontroller, not only can you emulate the UART, but
you can also program it to clear the screen, should a form-feed be sent or advance to the next line
should a Line-feed be sent.

The LCD example also required some additional logic (An Inverter) to reset the data
receive line on the UART, and provide a -ve edge on the enable of the LCD to display the data
present on the pins. This can all be done using the Microcontroller and thus reducing the chip
count and the cost of the project.

Talking of chip count, most Microcontrollers have internal oscillators thus you don't
require the 74HC4060 14 Bit Binary Counter and Oscillator. Many Microcontrollers such as the
68HC05J1A and PIC16C84 have a smaller pin count, than the 40 Pin UART. This not only
makes the project smaller in size, it reduces complexity of the PCB.

But there are also many disadvantages of the Microcontroller. The major one, is that you
have to program it. For the hobbyist, you may not have a development system for a
Microcontroller or a method of programming it. Then you have to learn the micro's code and
work out how to tackle the problem. At least with the UART, all you did was plug it in, wire it
up and it worked. You can't get much simpler that that.

So far we have only discussed Full Duplex Transmission, that is that we can transmit and
receive at the same time. If our Microcontroller doesn't have a SCI then we can Emulate a RS-
232 port using a Parallel line under software control. However Emulation has it's dis-advantages.
It only supports slow transmission speeds, commonly 2400, 9600 or maybe even 19,200 BPS if
you are lucky. The other disadvantage is that it's really only effective in half duplex mode. That
is, it can only communicate in one direction at any one given time. However in many
applications this is not a problem.

As there are many different types of Micro-Controllers all with their different instruction
sets, it is very hard to give examples here which will suit everyone. Just be aware that you can
use them for serial communications and hopefully at a later date, I can give a limited number of
examples with one micro.

Interfacing the Serial / RS232 Port V5.0 http://www.senet.com.au/~cpeacock

Interfacing the Serial / RS232 Port V5.0 Page 40

Craig Peacock’s Interfacing the PC

http://www.senet.com.au/~cpeacock

http://www.geocities.com/SiliconValley/Bay/8302/

Copyright 1998 Craig Peacock.

Any errors, ideas, criticisms or problems, please contact the author at cpeacock@senet.com.au

3:10pm Friday 30th January 1998

